“AI ในศูนย์รักษาความปลอดภัยองค์กร: ผู้ช่วยอัจฉริยะหรือแค่เสียงรบกวน? — เมื่อ CISO ต้องเผชิญความจริงของการใช้งานจริง”
ในปี 2025 การนำปัญญาประดิษฐ์ (AI) มาใช้ในระบบรักษาความปลอดภัยองค์กร (Security Operations Center – SOC) กลายเป็นประเด็นหลักของผู้บริหารด้านความปลอดภัยข้อมูล (CISO) ทั่วโลก หลายองค์กรหวังว่า AI จะเป็นตัวพลิกเกมในการรับมือภัยคุกคามไซเบอร์ที่ซับซ้อนและรวดเร็วขึ้น แต่เมื่อเริ่มใช้งานจริง กลับพบว่าความหวังนั้นต้องผ่านบทเรียนมากมายก่อนจะได้ผลลัพธ์ที่แท้จริง
Myke Lyons จากบริษัท Cribl ชี้ว่า AI และระบบอัตโนมัติช่วยลดเวลาในการตรวจจับและตอบสนองเหตุการณ์ได้จริง แต่ต้องอาศัยการจัดการข้อมูลอย่างมีโครงสร้าง โดยเฉพาะ telemetry ที่มีความสำคัญสูง เช่น log การยืนยันตัวตนและการเข้าใช้งานแอปพลิเคชัน ซึ่งต้องถูกส่งไปยังระบบที่มีความมั่นใจสูงเพื่อการตรวจจับแบบเรียลไทม์ ส่วนข้อมูลรองลงมาถูกเก็บไว้ใน data lake เพื่อใช้วิเคราะห์ย้อนหลังและลดต้นทุน
Erin Rogers จาก BOK Financial เสริมว่า AI แบบ “agentic” ซึ่งสามารถตัดสินใจและปรับตัวได้เอง กำลังช่วยให้ระบบตรวจจับภัยคุกคามสามารถตอบสนองได้รวดเร็วขึ้น เช่น การป้องกันการโจมตีแบบ Business Email Compromise แบบเรียลไทม์ โดยไม่ต้องรอมนุษย์เข้ามาแทรกแซง
แต่ไม่ใช่ทุกคนที่เห็นด้วย Shaila Rana จาก IEEE เตือนว่า AI ยังไม่แม่นยำพอ โดยอ้างผลการทดลองจาก Microsoft Research ที่พบว่า AI ตรวจจับมัลแวร์ได้เพียง 26% ภายใต้เงื่อนไขที่ยากที่สุด แม้จะมีความแม่นยำถึง 89% ในสถานการณ์ทั่วไปก็ตาม ซึ่งอาจทำให้ผู้ใช้เกิดความมั่นใจเกินจริงและลดการเฝ้าระวังที่จำเป็น
Anar Israfilov จาก Cyberoon Enterprise ย้ำว่า AI ต้องมีการควบคุมและตรวจสอบจากมนุษย์เสมอ เพราะหากไม่มีการตั้งค่าข้อมูลที่เหมาะสม ระบบอาจสร้าง “ghost alert” หรือการแจ้งเตือนผิดพลาดจำนวนมาก ทำให้ทีมงานเสียเวลาไล่ตามสิ่งที่ไม่มีอยู่จริง
Denida Grow จาก LeMareschal ก็เห็นด้วยว่า AI ยังไม่สามารถแทนที่มนุษย์ได้ โดยเฉพาะในงานที่ต้องใช้บริบท เช่น การตอบสนองเหตุการณ์ที่เกี่ยวข้องกับกฎหมายท้องถิ่น หรือความเสี่ยงเฉพาะขององค์กร ซึ่ง AI ยังไม่สามารถเข้าใจได้ลึกพอ
Jonathan Garini จาก fifthelement.ai สรุปว่า AI ควรถูกใช้เพื่อช่วยลดภาระงานซ้ำซาก เช่น การวิเคราะห์ log หรือการกรอง alert เพื่อให้ผู้เชี่ยวชาญมีเวลามากขึ้นในการแก้ปัญหาที่ซับซ้อน และการผสาน AI เข้ากับความรู้ภายในองค์กร เช่น ประวัติภัยคุกคามและ workflow ที่มีอยู่ จะช่วยให้ระบบมีประสิทธิภาพมากขึ้น
ข้อมูลสำคัญจากบทความ
AI ถูกนำมาใช้ใน SOC เพื่อเพิ่มความเร็วและลดภาระงานของนักวิเคราะห์
ระบบ agentic AI สามารถตัดสินใจและปรับตัวได้เองในบางกรณี เช่น การป้องกันอีเมลหลอกลวง
การจัดการ telemetry อย่างมีโครงสร้างช่วยเพิ่มความแม่นยำในการตรวจจับ
AI ช่วยลดเวลาในการตอบสนองเหตุการณ์และลดต้นทุนในการดำเนินงาน
มุมมองจากผู้เชี่ยวชาญ
ต้องมีการควบคุมและตรวจสอบจากมนุษย์เพื่อหลีกเลี่ยง ghost alert
AI ยังไม่สามารถเข้าใจบริบทเฉพาะ เช่น กฎหมายท้องถิ่นหรือความเสี่ยงเฉพาะองค์กร
การผสาน AI กับความรู้ภายในองค์กรช่วยเพิ่มประสิทธิภาพ
AI เหมาะกับงานซ้ำซาก เช่น การกรอง alert และการวิเคราะห์ log
ข้อมูลเสริมจากภายนอก
Cisco และ Splunk เปิดตัว SOC รุ่นใหม่ที่ใช้ agentic AI เพื่อรวมการตรวจจับและตอบสนองภัยคุกคาม
SANS Institute พบว่าองค์กรส่วนใหญ่ยังใช้ AI ในระดับสนับสนุน ไม่ใช่การตัดสินใจอัตโนมัติเต็มรูปแบบ
ปัญหาหลักของ AI ในความปลอดภัยคือ false positive และการขาดบริบท
การใช้ AI อย่างมีความรับผิดชอบต้องมี “guardrails” เช่น rule-based automation เพื่อควบคุมพฤติกรรมของระบบ
https://www.csoonline.com/article/4054301/cisos-grapple-with-the-realities-of-applying-ai-to-security-functions.html
ในปี 2025 การนำปัญญาประดิษฐ์ (AI) มาใช้ในระบบรักษาความปลอดภัยองค์กร (Security Operations Center – SOC) กลายเป็นประเด็นหลักของผู้บริหารด้านความปลอดภัยข้อมูล (CISO) ทั่วโลก หลายองค์กรหวังว่า AI จะเป็นตัวพลิกเกมในการรับมือภัยคุกคามไซเบอร์ที่ซับซ้อนและรวดเร็วขึ้น แต่เมื่อเริ่มใช้งานจริง กลับพบว่าความหวังนั้นต้องผ่านบทเรียนมากมายก่อนจะได้ผลลัพธ์ที่แท้จริง
Myke Lyons จากบริษัท Cribl ชี้ว่า AI และระบบอัตโนมัติช่วยลดเวลาในการตรวจจับและตอบสนองเหตุการณ์ได้จริง แต่ต้องอาศัยการจัดการข้อมูลอย่างมีโครงสร้าง โดยเฉพาะ telemetry ที่มีความสำคัญสูง เช่น log การยืนยันตัวตนและการเข้าใช้งานแอปพลิเคชัน ซึ่งต้องถูกส่งไปยังระบบที่มีความมั่นใจสูงเพื่อการตรวจจับแบบเรียลไทม์ ส่วนข้อมูลรองลงมาถูกเก็บไว้ใน data lake เพื่อใช้วิเคราะห์ย้อนหลังและลดต้นทุน
Erin Rogers จาก BOK Financial เสริมว่า AI แบบ “agentic” ซึ่งสามารถตัดสินใจและปรับตัวได้เอง กำลังช่วยให้ระบบตรวจจับภัยคุกคามสามารถตอบสนองได้รวดเร็วขึ้น เช่น การป้องกันการโจมตีแบบ Business Email Compromise แบบเรียลไทม์ โดยไม่ต้องรอมนุษย์เข้ามาแทรกแซง
แต่ไม่ใช่ทุกคนที่เห็นด้วย Shaila Rana จาก IEEE เตือนว่า AI ยังไม่แม่นยำพอ โดยอ้างผลการทดลองจาก Microsoft Research ที่พบว่า AI ตรวจจับมัลแวร์ได้เพียง 26% ภายใต้เงื่อนไขที่ยากที่สุด แม้จะมีความแม่นยำถึง 89% ในสถานการณ์ทั่วไปก็ตาม ซึ่งอาจทำให้ผู้ใช้เกิดความมั่นใจเกินจริงและลดการเฝ้าระวังที่จำเป็น
Anar Israfilov จาก Cyberoon Enterprise ย้ำว่า AI ต้องมีการควบคุมและตรวจสอบจากมนุษย์เสมอ เพราะหากไม่มีการตั้งค่าข้อมูลที่เหมาะสม ระบบอาจสร้าง “ghost alert” หรือการแจ้งเตือนผิดพลาดจำนวนมาก ทำให้ทีมงานเสียเวลาไล่ตามสิ่งที่ไม่มีอยู่จริง
Denida Grow จาก LeMareschal ก็เห็นด้วยว่า AI ยังไม่สามารถแทนที่มนุษย์ได้ โดยเฉพาะในงานที่ต้องใช้บริบท เช่น การตอบสนองเหตุการณ์ที่เกี่ยวข้องกับกฎหมายท้องถิ่น หรือความเสี่ยงเฉพาะขององค์กร ซึ่ง AI ยังไม่สามารถเข้าใจได้ลึกพอ
Jonathan Garini จาก fifthelement.ai สรุปว่า AI ควรถูกใช้เพื่อช่วยลดภาระงานซ้ำซาก เช่น การวิเคราะห์ log หรือการกรอง alert เพื่อให้ผู้เชี่ยวชาญมีเวลามากขึ้นในการแก้ปัญหาที่ซับซ้อน และการผสาน AI เข้ากับความรู้ภายในองค์กร เช่น ประวัติภัยคุกคามและ workflow ที่มีอยู่ จะช่วยให้ระบบมีประสิทธิภาพมากขึ้น
ข้อมูลสำคัญจากบทความ
AI ถูกนำมาใช้ใน SOC เพื่อเพิ่มความเร็วและลดภาระงานของนักวิเคราะห์
ระบบ agentic AI สามารถตัดสินใจและปรับตัวได้เองในบางกรณี เช่น การป้องกันอีเมลหลอกลวง
การจัดการ telemetry อย่างมีโครงสร้างช่วยเพิ่มความแม่นยำในการตรวจจับ
AI ช่วยลดเวลาในการตอบสนองเหตุการณ์และลดต้นทุนในการดำเนินงาน
มุมมองจากผู้เชี่ยวชาญ
ต้องมีการควบคุมและตรวจสอบจากมนุษย์เพื่อหลีกเลี่ยง ghost alert
AI ยังไม่สามารถเข้าใจบริบทเฉพาะ เช่น กฎหมายท้องถิ่นหรือความเสี่ยงเฉพาะองค์กร
การผสาน AI กับความรู้ภายในองค์กรช่วยเพิ่มประสิทธิภาพ
AI เหมาะกับงานซ้ำซาก เช่น การกรอง alert และการวิเคราะห์ log
ข้อมูลเสริมจากภายนอก
Cisco และ Splunk เปิดตัว SOC รุ่นใหม่ที่ใช้ agentic AI เพื่อรวมการตรวจจับและตอบสนองภัยคุกคาม
SANS Institute พบว่าองค์กรส่วนใหญ่ยังใช้ AI ในระดับสนับสนุน ไม่ใช่การตัดสินใจอัตโนมัติเต็มรูปแบบ
ปัญหาหลักของ AI ในความปลอดภัยคือ false positive และการขาดบริบท
การใช้ AI อย่างมีความรับผิดชอบต้องมี “guardrails” เช่น rule-based automation เพื่อควบคุมพฤติกรรมของระบบ
https://www.csoonline.com/article/4054301/cisos-grapple-with-the-realities-of-applying-ai-to-security-functions.html
🤖 “AI ในศูนย์รักษาความปลอดภัยองค์กร: ผู้ช่วยอัจฉริยะหรือแค่เสียงรบกวน? — เมื่อ CISO ต้องเผชิญความจริงของการใช้งานจริง”
ในปี 2025 การนำปัญญาประดิษฐ์ (AI) มาใช้ในระบบรักษาความปลอดภัยองค์กร (Security Operations Center – SOC) กลายเป็นประเด็นหลักของผู้บริหารด้านความปลอดภัยข้อมูล (CISO) ทั่วโลก หลายองค์กรหวังว่า AI จะเป็นตัวพลิกเกมในการรับมือภัยคุกคามไซเบอร์ที่ซับซ้อนและรวดเร็วขึ้น แต่เมื่อเริ่มใช้งานจริง กลับพบว่าความหวังนั้นต้องผ่านบทเรียนมากมายก่อนจะได้ผลลัพธ์ที่แท้จริง
Myke Lyons จากบริษัท Cribl ชี้ว่า AI และระบบอัตโนมัติช่วยลดเวลาในการตรวจจับและตอบสนองเหตุการณ์ได้จริง แต่ต้องอาศัยการจัดการข้อมูลอย่างมีโครงสร้าง โดยเฉพาะ telemetry ที่มีความสำคัญสูง เช่น log การยืนยันตัวตนและการเข้าใช้งานแอปพลิเคชัน ซึ่งต้องถูกส่งไปยังระบบที่มีความมั่นใจสูงเพื่อการตรวจจับแบบเรียลไทม์ ส่วนข้อมูลรองลงมาถูกเก็บไว้ใน data lake เพื่อใช้วิเคราะห์ย้อนหลังและลดต้นทุน
Erin Rogers จาก BOK Financial เสริมว่า AI แบบ “agentic” ซึ่งสามารถตัดสินใจและปรับตัวได้เอง กำลังช่วยให้ระบบตรวจจับภัยคุกคามสามารถตอบสนองได้รวดเร็วขึ้น เช่น การป้องกันการโจมตีแบบ Business Email Compromise แบบเรียลไทม์ โดยไม่ต้องรอมนุษย์เข้ามาแทรกแซง
แต่ไม่ใช่ทุกคนที่เห็นด้วย Shaila Rana จาก IEEE เตือนว่า AI ยังไม่แม่นยำพอ โดยอ้างผลการทดลองจาก Microsoft Research ที่พบว่า AI ตรวจจับมัลแวร์ได้เพียง 26% ภายใต้เงื่อนไขที่ยากที่สุด แม้จะมีความแม่นยำถึง 89% ในสถานการณ์ทั่วไปก็ตาม ซึ่งอาจทำให้ผู้ใช้เกิดความมั่นใจเกินจริงและลดการเฝ้าระวังที่จำเป็น
Anar Israfilov จาก Cyberoon Enterprise ย้ำว่า AI ต้องมีการควบคุมและตรวจสอบจากมนุษย์เสมอ เพราะหากไม่มีการตั้งค่าข้อมูลที่เหมาะสม ระบบอาจสร้าง “ghost alert” หรือการแจ้งเตือนผิดพลาดจำนวนมาก ทำให้ทีมงานเสียเวลาไล่ตามสิ่งที่ไม่มีอยู่จริง
Denida Grow จาก LeMareschal ก็เห็นด้วยว่า AI ยังไม่สามารถแทนที่มนุษย์ได้ โดยเฉพาะในงานที่ต้องใช้บริบท เช่น การตอบสนองเหตุการณ์ที่เกี่ยวข้องกับกฎหมายท้องถิ่น หรือความเสี่ยงเฉพาะขององค์กร ซึ่ง AI ยังไม่สามารถเข้าใจได้ลึกพอ
Jonathan Garini จาก fifthelement.ai สรุปว่า AI ควรถูกใช้เพื่อช่วยลดภาระงานซ้ำซาก เช่น การวิเคราะห์ log หรือการกรอง alert เพื่อให้ผู้เชี่ยวชาญมีเวลามากขึ้นในการแก้ปัญหาที่ซับซ้อน และการผสาน AI เข้ากับความรู้ภายในองค์กร เช่น ประวัติภัยคุกคามและ workflow ที่มีอยู่ จะช่วยให้ระบบมีประสิทธิภาพมากขึ้น
✅ ข้อมูลสำคัญจากบทความ
➡️ AI ถูกนำมาใช้ใน SOC เพื่อเพิ่มความเร็วและลดภาระงานของนักวิเคราะห์
➡️ ระบบ agentic AI สามารถตัดสินใจและปรับตัวได้เองในบางกรณี เช่น การป้องกันอีเมลหลอกลวง
➡️ การจัดการ telemetry อย่างมีโครงสร้างช่วยเพิ่มความแม่นยำในการตรวจจับ
➡️ AI ช่วยลดเวลาในการตอบสนองเหตุการณ์และลดต้นทุนในการดำเนินงาน
✅ มุมมองจากผู้เชี่ยวชาญ
➡️ ต้องมีการควบคุมและตรวจสอบจากมนุษย์เพื่อหลีกเลี่ยง ghost alert
➡️ AI ยังไม่สามารถเข้าใจบริบทเฉพาะ เช่น กฎหมายท้องถิ่นหรือความเสี่ยงเฉพาะองค์กร
➡️ การผสาน AI กับความรู้ภายในองค์กรช่วยเพิ่มประสิทธิภาพ
➡️ AI เหมาะกับงานซ้ำซาก เช่น การกรอง alert และการวิเคราะห์ log
✅ ข้อมูลเสริมจากภายนอก
➡️ Cisco และ Splunk เปิดตัว SOC รุ่นใหม่ที่ใช้ agentic AI เพื่อรวมการตรวจจับและตอบสนองภัยคุกคาม
➡️ SANS Institute พบว่าองค์กรส่วนใหญ่ยังใช้ AI ในระดับสนับสนุน ไม่ใช่การตัดสินใจอัตโนมัติเต็มรูปแบบ
➡️ ปัญหาหลักของ AI ในความปลอดภัยคือ false positive และการขาดบริบท
➡️ การใช้ AI อย่างมีความรับผิดชอบต้องมี “guardrails” เช่น rule-based automation เพื่อควบคุมพฤติกรรมของระบบ
https://www.csoonline.com/article/4054301/cisos-grapple-with-the-realities-of-applying-ai-to-security-functions.html
0 Comments
0 Shares
22 Views
0 Reviews