รายงานจาก TechSpot ระบุว่า ความหนาแน่นของพลังงานและความร้อนที่เพิ่มขึ้น กำลังเป็นภัยคุกคามต่ออนาคตของเซมิคอนดักเตอร์ขั้นสูง โดยปัญหานี้เกิดจาก การสิ้นสุดของ Dennard scaling ซึ่งเคยช่วยให้สามารถลดแรงดันไฟฟ้าพร้อมกับการเพิ่มจำนวนทรานซิสเตอร์
✅ ความหนาแน่นของพลังงานที่เพิ่มขึ้นทำให้เกิดวิกฤตความร้อนในชิปยุคใหม่
- อุณหภูมิที่สูงขึ้นส่งผลต่อ ประสิทธิภาพและการใช้พลังงานของชิป
- ความร้อนที่มากเกินไปสามารถ ชะลอการส่งสัญญาณ, ลดประสิทธิภาพ และเพิ่มการรั่วไหลของกระแสไฟฟ้า
✅ การสิ้นสุดของ Dennard scaling ทำให้แรงดันไฟฟ้าไม่สามารถลดลงได้อีก
- ก่อนปี 2000 วิศวกรสามารถ ลดแรงดันไฟฟ้าพร้อมกับการเพิ่มจำนวนทรานซิสเตอร์
- แต่ในปัจจุบัน แรงดันไฟฟ้าไม่สามารถลดลงได้อีก ทำให้พลังงานที่ใช้ต่อพื้นที่เพิ่มขึ้น
✅ เทคโนโลยีใหม่ เช่น CFETs อาจทำให้ปัญหาความร้อนรุนแรงขึ้น
- CFETs (Complementary Field-Effect Transistors) เพิ่มความหนาแน่นของทรานซิสเตอร์โดยการซ้อนกัน
- การจำลองแสดงให้เห็นว่า CFETs อาจเพิ่มอุณหภูมิของชิปขึ้น 9°C
✅ นักวิจัยกำลังพัฒนาแนวทางใหม่ในการจัดการความร้อน
- Microfluidic cooling: ใช้ของเหลวไหลผ่านช่องทางระดับไมโครภายในชิป
- Jet impingement: ใช้กระแสของเหลวความเร็วสูงเพื่อระบายความร้อน
- Immersion cooling: จุ่มบอร์ดทั้งหมดลงในของเหลวที่นำความร้อนได้ดี
✅ แนวทางใหม่ในการจัดการพลังงานของชิป
- Backside power delivery network (BSPDN): ย้ายเครือข่ายจ่ายไฟไปด้านหลังของชิปเพื่อลดความต้านทานไฟฟ้า
- BSPDN อาจช่วยลดแรงดันไฟฟ้า แต่ อาจเพิ่มอุณหภูมิของชิปขึ้น 14°C
ℹ️ ผลกระทบต่ออุตสาหกรรมเซมิคอนดักเตอร์
- หากปัญหาความร้อนยังคงเพิ่มขึ้น อาจทำให้ การพัฒนาเซมิคอนดักเตอร์ต้องชะลอตัว
ℹ️ ความท้าทายในการใช้เทคโนโลยีระบายความร้อนใหม่
- เทคโนโลยีเช่น microfluidic cooling และ immersion cooling อาจมีต้นทุนสูงและต้องปรับโครงสร้างพื้นฐาน
ℹ️ แนวโน้มของการพัฒนาเซมิคอนดักเตอร์ในอนาคต
- หาก BSPDN ได้รับการพัฒนาเพิ่มเติม อาจช่วยให้ ชิปสามารถทำงานที่แรงดันไฟฟ้าต่ำลงและลดความร้อน
https://www.techspot.com/news/107585-rising-power-density-heat-threaten-future-advanced-semiconductors.html รายงานจาก TechSpot ระบุว่า ความหนาแน่นของพลังงานและความร้อนที่เพิ่มขึ้น กำลังเป็นภัยคุกคามต่ออนาคตของเซมิคอนดักเตอร์ขั้นสูง โดยปัญหานี้เกิดจาก การสิ้นสุดของ Dennard scaling ซึ่งเคยช่วยให้สามารถลดแรงดันไฟฟ้าพร้อมกับการเพิ่มจำนวนทรานซิสเตอร์
✅ ความหนาแน่นของพลังงานที่เพิ่มขึ้นทำให้เกิดวิกฤตความร้อนในชิปยุคใหม่
- อุณหภูมิที่สูงขึ้นส่งผลต่อ ประสิทธิภาพและการใช้พลังงานของชิป
- ความร้อนที่มากเกินไปสามารถ ชะลอการส่งสัญญาณ, ลดประสิทธิภาพ และเพิ่มการรั่วไหลของกระแสไฟฟ้า
✅ การสิ้นสุดของ Dennard scaling ทำให้แรงดันไฟฟ้าไม่สามารถลดลงได้อีก
- ก่อนปี 2000 วิศวกรสามารถ ลดแรงดันไฟฟ้าพร้อมกับการเพิ่มจำนวนทรานซิสเตอร์
- แต่ในปัจจุบัน แรงดันไฟฟ้าไม่สามารถลดลงได้อีก ทำให้พลังงานที่ใช้ต่อพื้นที่เพิ่มขึ้น
✅ เทคโนโลยีใหม่ เช่น CFETs อาจทำให้ปัญหาความร้อนรุนแรงขึ้น
- CFETs (Complementary Field-Effect Transistors) เพิ่มความหนาแน่นของทรานซิสเตอร์โดยการซ้อนกัน
- การจำลองแสดงให้เห็นว่า CFETs อาจเพิ่มอุณหภูมิของชิปขึ้น 9°C
✅ นักวิจัยกำลังพัฒนาแนวทางใหม่ในการจัดการความร้อน
- Microfluidic cooling: ใช้ของเหลวไหลผ่านช่องทางระดับไมโครภายในชิป
- Jet impingement: ใช้กระแสของเหลวความเร็วสูงเพื่อระบายความร้อน
- Immersion cooling: จุ่มบอร์ดทั้งหมดลงในของเหลวที่นำความร้อนได้ดี
✅ แนวทางใหม่ในการจัดการพลังงานของชิป
- Backside power delivery network (BSPDN): ย้ายเครือข่ายจ่ายไฟไปด้านหลังของชิปเพื่อลดความต้านทานไฟฟ้า
- BSPDN อาจช่วยลดแรงดันไฟฟ้า แต่ อาจเพิ่มอุณหภูมิของชิปขึ้น 14°C
ℹ️ ผลกระทบต่ออุตสาหกรรมเซมิคอนดักเตอร์
- หากปัญหาความร้อนยังคงเพิ่มขึ้น อาจทำให้ การพัฒนาเซมิคอนดักเตอร์ต้องชะลอตัว
ℹ️ ความท้าทายในการใช้เทคโนโลยีระบายความร้อนใหม่
- เทคโนโลยีเช่น microfluidic cooling และ immersion cooling อาจมีต้นทุนสูงและต้องปรับโครงสร้างพื้นฐาน
ℹ️ แนวโน้มของการพัฒนาเซมิคอนดักเตอร์ในอนาคต
- หาก BSPDN ได้รับการพัฒนาเพิ่มเติม อาจช่วยให้ ชิปสามารถทำงานที่แรงดันไฟฟ้าต่ำลงและลดความร้อน
https://www.techspot.com/news/107585-rising-power-density-heat-threaten-future-advanced-semiconductors.html