เรื่องเล่าจาก dopamine hit ถึง debugging: เมื่อคนเขียนโค้ดรุ่นเก๋าใช้ AI อย่างมีชั้นเชิง
จากผลสำรวจของ Fastly ที่เผยแพร่ผ่าน TechRadar และ The Register พบว่า นักพัฒนาอาวุโส (มีประสบการณ์มากกว่า 10 ปี) ใช้เครื่องมือสร้างโค้ดด้วย AI เช่น Copilot, Claude, Gemini มากกว่านักพัฒนารุ่นใหม่ถึง 2.5 เท่า โดยประมาณหนึ่งในสามของนักพัฒนาอาวุโสระบุว่า “มากกว่าครึ่ง” ของโค้ดที่พวกเขาส่งขึ้น production มาจาก AI
แต่การใช้ AI ไม่ได้หมายถึงการพึ่งพาแบบไร้การตรวจสอบ—นักพัฒนาอาวุโสกลับใช้เวลา “มากขึ้น” ในการตรวจสอบข้อผิดพลาดที่เกิดจาก AI และแก้ไขให้เหมาะสมกับบริบทของระบบจริง โดยเฉพาะในงานที่มีความเสี่ยงสูงหรือมีผลกระทบต่อธุรกิจ
Austin Spires จาก Fastly อธิบายว่า นักพัฒนาอาวุโสไม่ได้เขียนโค้ดทั้งวัน แต่ต้องดูแล testing, architecture และ mentoring ด้วย การใช้ AI เพื่อสร้าง prototype อย่างรวดเร็วจึงช่วยให้พวกเขา “ได้ความรู้สึกสนุกแบบเดิมกลับมา”—คล้ายกับ dopamine hit ที่เคยได้จากการเขียนโค้ดด้วยมือในยุคแรก
ในทางกลับกัน นักพัฒนารุ่นใหม่ (ประสบการณ์ต่ำกว่า 2 ปี) กลับใช้ AI น้อยกว่า และมักเลือกเขียนโค้ดด้วยมือ เพราะรู้สึกว่า AI ยังไม่เข้าใจบริบทหรือเจตนาของโค้ดที่ต้องการได้ดีพอ ซึ่งสะท้อนถึงความเชื่อมั่นในฝีมือและความต้องการเรียนรู้เชิงลึก
ที่น่าสนใจคือ นักพัฒนาอาวุโสยังให้ความสำคัญกับผลกระทบด้านสิ่งแวดล้อมของโค้ดที่เขียน—กว่า 80% ระบุว่าพวกเขาคำนึงถึงพลังงานที่ใช้ในการรันโค้ด ขณะที่นักพัฒนารุ่นใหม่มีเพียงครึ่งเดียวที่คิดถึงเรื่องนี้ และเกือบ 10% ยอมรับว่า “ไม่รู้เลยว่าระบบใช้พลังงานเท่าไหร่”
การใช้งาน AI coding tools ในกลุ่มนักพัฒนาอาวุโส
32% ของนักพัฒนาอาวุโสใช้ AI สร้างโค้ดมากกว่าครึ่งของงานที่ deploy
ใช้ AI เพื่อสร้าง prototype และเร่งงานที่ไม่ต้องการความละเอียดสูง
ใช้เวลาเพิ่มในการตรวจสอบข้อผิดพลาดจาก AI เพื่อความมั่นใจ
พฤติกรรมของนักพัฒนารุ่นใหม่
มีเพียง 13% ที่ใช้ AI coding tools ในระดับเดียวกัน
มักเลือกเขียนโค้ดด้วยมือเพื่อความเข้าใจและควบคุมที่มากกว่า
มองว่า AI ยังไม่สามารถเข้าใจเจตนาของโค้ดได้ดีพอ
ความรู้สึกและแรงจูงใจ
นักพัฒนาอาวุโสรู้สึกว่า AI coding ให้ dopamine hit คล้ายกับการเขียนโค้ดยุคแรก
นักพัฒนารุ่นใหม่ยังให้คุณค่ากับ “craftsmanship” ของการเขียนโค้ดด้วยมือ
ทั้งสองกลุ่มมากกว่า 70% เห็นว่า AI ทำให้การทำงานสนุกขึ้น
ความตระหนักด้านสิ่งแวดล้อม
80% ของนักพัฒนาอาวุโสคำนึงถึงพลังงานที่ใช้ในการรันโค้ด
นักพัฒนารุ่นใหม่มีเพียงครึ่งเดียวที่คิดถึงเรื่องนี้
เกือบ 10% ยอมรับว่าไม่รู้ว่าระบบใช้พลังงานเท่าไหร่
https://www.techradar.com/pro/they-dont-make-em-like-they-used-to-older-coders-are-more-in-tune-with-vibe-coding-study-claims
จากผลสำรวจของ Fastly ที่เผยแพร่ผ่าน TechRadar และ The Register พบว่า นักพัฒนาอาวุโส (มีประสบการณ์มากกว่า 10 ปี) ใช้เครื่องมือสร้างโค้ดด้วย AI เช่น Copilot, Claude, Gemini มากกว่านักพัฒนารุ่นใหม่ถึง 2.5 เท่า โดยประมาณหนึ่งในสามของนักพัฒนาอาวุโสระบุว่า “มากกว่าครึ่ง” ของโค้ดที่พวกเขาส่งขึ้น production มาจาก AI
แต่การใช้ AI ไม่ได้หมายถึงการพึ่งพาแบบไร้การตรวจสอบ—นักพัฒนาอาวุโสกลับใช้เวลา “มากขึ้น” ในการตรวจสอบข้อผิดพลาดที่เกิดจาก AI และแก้ไขให้เหมาะสมกับบริบทของระบบจริง โดยเฉพาะในงานที่มีความเสี่ยงสูงหรือมีผลกระทบต่อธุรกิจ
Austin Spires จาก Fastly อธิบายว่า นักพัฒนาอาวุโสไม่ได้เขียนโค้ดทั้งวัน แต่ต้องดูแล testing, architecture และ mentoring ด้วย การใช้ AI เพื่อสร้าง prototype อย่างรวดเร็วจึงช่วยให้พวกเขา “ได้ความรู้สึกสนุกแบบเดิมกลับมา”—คล้ายกับ dopamine hit ที่เคยได้จากการเขียนโค้ดด้วยมือในยุคแรก
ในทางกลับกัน นักพัฒนารุ่นใหม่ (ประสบการณ์ต่ำกว่า 2 ปี) กลับใช้ AI น้อยกว่า และมักเลือกเขียนโค้ดด้วยมือ เพราะรู้สึกว่า AI ยังไม่เข้าใจบริบทหรือเจตนาของโค้ดที่ต้องการได้ดีพอ ซึ่งสะท้อนถึงความเชื่อมั่นในฝีมือและความต้องการเรียนรู้เชิงลึก
ที่น่าสนใจคือ นักพัฒนาอาวุโสยังให้ความสำคัญกับผลกระทบด้านสิ่งแวดล้อมของโค้ดที่เขียน—กว่า 80% ระบุว่าพวกเขาคำนึงถึงพลังงานที่ใช้ในการรันโค้ด ขณะที่นักพัฒนารุ่นใหม่มีเพียงครึ่งเดียวที่คิดถึงเรื่องนี้ และเกือบ 10% ยอมรับว่า “ไม่รู้เลยว่าระบบใช้พลังงานเท่าไหร่”
การใช้งาน AI coding tools ในกลุ่มนักพัฒนาอาวุโส
32% ของนักพัฒนาอาวุโสใช้ AI สร้างโค้ดมากกว่าครึ่งของงานที่ deploy
ใช้ AI เพื่อสร้าง prototype และเร่งงานที่ไม่ต้องการความละเอียดสูง
ใช้เวลาเพิ่มในการตรวจสอบข้อผิดพลาดจาก AI เพื่อความมั่นใจ
พฤติกรรมของนักพัฒนารุ่นใหม่
มีเพียง 13% ที่ใช้ AI coding tools ในระดับเดียวกัน
มักเลือกเขียนโค้ดด้วยมือเพื่อความเข้าใจและควบคุมที่มากกว่า
มองว่า AI ยังไม่สามารถเข้าใจเจตนาของโค้ดได้ดีพอ
ความรู้สึกและแรงจูงใจ
นักพัฒนาอาวุโสรู้สึกว่า AI coding ให้ dopamine hit คล้ายกับการเขียนโค้ดยุคแรก
นักพัฒนารุ่นใหม่ยังให้คุณค่ากับ “craftsmanship” ของการเขียนโค้ดด้วยมือ
ทั้งสองกลุ่มมากกว่า 70% เห็นว่า AI ทำให้การทำงานสนุกขึ้น
ความตระหนักด้านสิ่งแวดล้อม
80% ของนักพัฒนาอาวุโสคำนึงถึงพลังงานที่ใช้ในการรันโค้ด
นักพัฒนารุ่นใหม่มีเพียงครึ่งเดียวที่คิดถึงเรื่องนี้
เกือบ 10% ยอมรับว่าไม่รู้ว่าระบบใช้พลังงานเท่าไหร่
https://www.techradar.com/pro/they-dont-make-em-like-they-used-to-older-coders-are-more-in-tune-with-vibe-coding-study-claims
🎙️ เรื่องเล่าจาก dopamine hit ถึง debugging: เมื่อคนเขียนโค้ดรุ่นเก๋าใช้ AI อย่างมีชั้นเชิง
จากผลสำรวจของ Fastly ที่เผยแพร่ผ่าน TechRadar และ The Register พบว่า นักพัฒนาอาวุโส (มีประสบการณ์มากกว่า 10 ปี) ใช้เครื่องมือสร้างโค้ดด้วย AI เช่น Copilot, Claude, Gemini มากกว่านักพัฒนารุ่นใหม่ถึง 2.5 เท่า โดยประมาณหนึ่งในสามของนักพัฒนาอาวุโสระบุว่า “มากกว่าครึ่ง” ของโค้ดที่พวกเขาส่งขึ้น production มาจาก AI
แต่การใช้ AI ไม่ได้หมายถึงการพึ่งพาแบบไร้การตรวจสอบ—นักพัฒนาอาวุโสกลับใช้เวลา “มากขึ้น” ในการตรวจสอบข้อผิดพลาดที่เกิดจาก AI และแก้ไขให้เหมาะสมกับบริบทของระบบจริง โดยเฉพาะในงานที่มีความเสี่ยงสูงหรือมีผลกระทบต่อธุรกิจ
Austin Spires จาก Fastly อธิบายว่า นักพัฒนาอาวุโสไม่ได้เขียนโค้ดทั้งวัน แต่ต้องดูแล testing, architecture และ mentoring ด้วย การใช้ AI เพื่อสร้าง prototype อย่างรวดเร็วจึงช่วยให้พวกเขา “ได้ความรู้สึกสนุกแบบเดิมกลับมา”—คล้ายกับ dopamine hit ที่เคยได้จากการเขียนโค้ดด้วยมือในยุคแรก
ในทางกลับกัน นักพัฒนารุ่นใหม่ (ประสบการณ์ต่ำกว่า 2 ปี) กลับใช้ AI น้อยกว่า และมักเลือกเขียนโค้ดด้วยมือ เพราะรู้สึกว่า AI ยังไม่เข้าใจบริบทหรือเจตนาของโค้ดที่ต้องการได้ดีพอ ซึ่งสะท้อนถึงความเชื่อมั่นในฝีมือและความต้องการเรียนรู้เชิงลึก
ที่น่าสนใจคือ นักพัฒนาอาวุโสยังให้ความสำคัญกับผลกระทบด้านสิ่งแวดล้อมของโค้ดที่เขียน—กว่า 80% ระบุว่าพวกเขาคำนึงถึงพลังงานที่ใช้ในการรันโค้ด ขณะที่นักพัฒนารุ่นใหม่มีเพียงครึ่งเดียวที่คิดถึงเรื่องนี้ และเกือบ 10% ยอมรับว่า “ไม่รู้เลยว่าระบบใช้พลังงานเท่าไหร่”
✅ การใช้งาน AI coding tools ในกลุ่มนักพัฒนาอาวุโส
➡️ 32% ของนักพัฒนาอาวุโสใช้ AI สร้างโค้ดมากกว่าครึ่งของงานที่ deploy
➡️ ใช้ AI เพื่อสร้าง prototype และเร่งงานที่ไม่ต้องการความละเอียดสูง
➡️ ใช้เวลาเพิ่มในการตรวจสอบข้อผิดพลาดจาก AI เพื่อความมั่นใจ
✅ พฤติกรรมของนักพัฒนารุ่นใหม่
➡️ มีเพียง 13% ที่ใช้ AI coding tools ในระดับเดียวกัน
➡️ มักเลือกเขียนโค้ดด้วยมือเพื่อความเข้าใจและควบคุมที่มากกว่า
➡️ มองว่า AI ยังไม่สามารถเข้าใจเจตนาของโค้ดได้ดีพอ
✅ ความรู้สึกและแรงจูงใจ
➡️ นักพัฒนาอาวุโสรู้สึกว่า AI coding ให้ dopamine hit คล้ายกับการเขียนโค้ดยุคแรก
➡️ นักพัฒนารุ่นใหม่ยังให้คุณค่ากับ “craftsmanship” ของการเขียนโค้ดด้วยมือ
➡️ ทั้งสองกลุ่มมากกว่า 70% เห็นว่า AI ทำให้การทำงานสนุกขึ้น
✅ ความตระหนักด้านสิ่งแวดล้อม
➡️ 80% ของนักพัฒนาอาวุโสคำนึงถึงพลังงานที่ใช้ในการรันโค้ด
➡️ นักพัฒนารุ่นใหม่มีเพียงครึ่งเดียวที่คิดถึงเรื่องนี้
➡️ เกือบ 10% ยอมรับว่าไม่รู้ว่าระบบใช้พลังงานเท่าไหร่
https://www.techradar.com/pro/they-dont-make-em-like-they-used-to-older-coders-are-more-in-tune-with-vibe-coding-study-claims
0 ความคิดเห็น
0 การแบ่งปัน
48 มุมมอง
0 รีวิว