เรื่องเล่าจากวิวัฒนาการของโมเดล GPT: จาก GPT-2 สู่ gpt-oss ยุคใหม่ของ AI แบบเปิด

ย้อนกลับไปปี 2019 OpenAI เคยเปิดตัว GPT-2 ซึ่งเป็นโมเดลภาษาขนาดใหญ่ที่ใช้สถาปัตยกรรม Transformer และได้รับความนิยมอย่างมากในวงการ AI แต่หลังจากนั้น OpenAI ก็หันไปพัฒนาโมเดลแบบปิด เช่น GPT-3 และ ChatGPT โดยไม่เปิดเผยน้ำหนักโมเดลอีกเลย จนกระทั่งสิงหาคม 2025 พวกเขากลับมาอีกครั้งด้วย gpt-oss-20B และ gpt-oss-120B ซึ่งเป็นโมเดลแบบ “open-weight” ที่เปิดให้ดาวน์โหลด ใช้งาน และปรับแต่งได้อย่างเสรีภายใต้ Apache 2.0 license

โมเดล gpt-oss ใช้เทคนิคใหม่ ๆ เช่น Mixture-of-Experts (MoE), Sliding Window Attention, RMSNorm และ SwiGLU เพื่อเพิ่มประสิทธิภาพและลดต้นทุนการประมวลผล โดยสามารถรันบน GPU ทั่วไปได้ เช่น 20B ใช้แค่ 16GB RAM ส่วน 120B ใช้ H100 GPU ตัวเดียว

แม้สถาปัตยกรรมโดยรวมยังคงใช้ Transformer เหมือนเดิม แต่การปรับแต่งภายในทำให้โมเดลเหล่านี้มีประสิทธิภาพสูงขึ้นมาก และสามารถแข่งขันกับโมเดลจากจีน เช่น Qwen3 ได้อย่างสูสี

อย่างไรก็ตาม ยังมีข้อกังวลเรื่องความแม่นยำของข้อมูล (hallucination rate สูงถึง 49–53%) และความโปร่งใสของชุดข้อมูลที่ใช้ฝึก ซึ่ง OpenAI ยังไม่เปิดเผยเพราะเกรงปัญหาด้านลิขสิทธิ์

OpenAI เปิดตัว gpt-oss-20B และ gpt-oss-120B เป็นโมเดล open-weight ครั้งแรกในรอบ 6 ปี
ใช้ Apache 2.0 license เปิดให้ใช้งานและปรับแต่งได้อย่างเสรี

โมเดลใช้สถาปัตยกรรม Transformer แบบ decoder-only
เหมือน GPT-2 แต่มีการปรับแต่งภายในหลายจุด

ใช้เทคนิค Mixture-of-Experts (MoE) เพื่อเพิ่มประสิทธิภาพ
เปิดใช้งานเฉพาะบางส่วนของโมเดลในแต่ละ token

gpt-oss-20B รันได้บน GPU ทั่วไป (16GB RAM)
ส่วน gpt-oss-120B ใช้ H100 GPU ตัวเดียว

โมเดลมี benchmark สูง เช่น Codeforces score 2622 (120B)
สูงกว่า DeepSeek R1 แต่ยังต่ำกว่า o3 และ o4-mini

ใช้ Sliding Window Attention, RMSNorm, SwiGLU แทนเทคนิคเก่า
ลดต้นทุนการคำนวณและเพิ่มความเร็วในการ inference

เปรียบเทียบกับ Qwen3 พบว่า gpt-oss เน้น “กว้าง” มากกว่า “ลึก”
มี embedding และ FFN ขนาดใหญ่ แต่ layer น้อยกว่า

การเปิดโมเดลแบบ open-weight ช่วยให้นักพัฒนาสามารถปรับแต่งได้ตามต้องการ
เหมาะกับงานเฉพาะทาง เช่น การฝึกบนข้อมูลภายในองค์กร

Apache 2.0 license ช่วยให้ startup และองค์กรขนาดเล็กเข้าถึง AI ขั้นสูง
โดยไม่ต้องเสียค่าใช้จ่ายหรือขออนุญาต

โมเดลสามารถใช้ในระบบ agent เช่น การเรียกใช้เครื่องมือหรือ API
รองรับการใช้งานแบบ hybrid ระหว่าง local และ cloud

OpenAI หวังใช้ gpt-oss เพื่อแข่งขันกับโมเดลจากจีน เช่น DeepSeek และ Qwen
และฟื้นความเชื่อมั่นจากชุมชน open-source

โมเดล gpt-oss มี hallucination rate สูง (49–53%)
อาจให้ข้อมูลผิดพลาดในงานที่ต้องการความแม่นยำสูง

OpenAI ไม่เปิดเผยชุดข้อมูลที่ใช้ฝึกโมเดล
เกิดข้อกังวลเรื่องลิขสิทธิ์และความโปร่งใส

แม้จะเปิดน้ำหนักโมเดล แต่ยังต้องใช้ hardware ขั้นสูงสำหรับรุ่นใหญ่
อาจไม่เหมาะกับผู้ใช้ทั่วไปที่ไม่มี GPU ระดับ enterprise

การใช้ MoE ทำให้การฝึกและ deploy ซับซ้อนขึ้น
ต้องมีระบบ routing และการจัดการ expert ที่แม่นยำ

https://magazine.sebastianraschka.com/p/from-gpt-2-to-gpt-oss-analyzing-the
🧠💡 เรื่องเล่าจากวิวัฒนาการของโมเดล GPT: จาก GPT-2 สู่ gpt-oss ยุคใหม่ของ AI แบบเปิด ย้อนกลับไปปี 2019 OpenAI เคยเปิดตัว GPT-2 ซึ่งเป็นโมเดลภาษาขนาดใหญ่ที่ใช้สถาปัตยกรรม Transformer และได้รับความนิยมอย่างมากในวงการ AI แต่หลังจากนั้น OpenAI ก็หันไปพัฒนาโมเดลแบบปิด เช่น GPT-3 และ ChatGPT โดยไม่เปิดเผยน้ำหนักโมเดลอีกเลย จนกระทั่งสิงหาคม 2025 พวกเขากลับมาอีกครั้งด้วย gpt-oss-20B และ gpt-oss-120B ซึ่งเป็นโมเดลแบบ “open-weight” ที่เปิดให้ดาวน์โหลด ใช้งาน และปรับแต่งได้อย่างเสรีภายใต้ Apache 2.0 license โมเดล gpt-oss ใช้เทคนิคใหม่ ๆ เช่น Mixture-of-Experts (MoE), Sliding Window Attention, RMSNorm และ SwiGLU เพื่อเพิ่มประสิทธิภาพและลดต้นทุนการประมวลผล โดยสามารถรันบน GPU ทั่วไปได้ เช่น 20B ใช้แค่ 16GB RAM ส่วน 120B ใช้ H100 GPU ตัวเดียว แม้สถาปัตยกรรมโดยรวมยังคงใช้ Transformer เหมือนเดิม แต่การปรับแต่งภายในทำให้โมเดลเหล่านี้มีประสิทธิภาพสูงขึ้นมาก และสามารถแข่งขันกับโมเดลจากจีน เช่น Qwen3 ได้อย่างสูสี อย่างไรก็ตาม ยังมีข้อกังวลเรื่องความแม่นยำของข้อมูล (hallucination rate สูงถึง 49–53%) และความโปร่งใสของชุดข้อมูลที่ใช้ฝึก ซึ่ง OpenAI ยังไม่เปิดเผยเพราะเกรงปัญหาด้านลิขสิทธิ์ ✅ OpenAI เปิดตัว gpt-oss-20B และ gpt-oss-120B เป็นโมเดล open-weight ครั้งแรกในรอบ 6 ปี ➡️ ใช้ Apache 2.0 license เปิดให้ใช้งานและปรับแต่งได้อย่างเสรี ✅ โมเดลใช้สถาปัตยกรรม Transformer แบบ decoder-only ➡️ เหมือน GPT-2 แต่มีการปรับแต่งภายในหลายจุด ✅ ใช้เทคนิค Mixture-of-Experts (MoE) เพื่อเพิ่มประสิทธิภาพ ➡️ เปิดใช้งานเฉพาะบางส่วนของโมเดลในแต่ละ token ✅ gpt-oss-20B รันได้บน GPU ทั่วไป (16GB RAM) ➡️ ส่วน gpt-oss-120B ใช้ H100 GPU ตัวเดียว ✅ โมเดลมี benchmark สูง เช่น Codeforces score 2622 (120B) ➡️ สูงกว่า DeepSeek R1 แต่ยังต่ำกว่า o3 และ o4-mini ✅ ใช้ Sliding Window Attention, RMSNorm, SwiGLU แทนเทคนิคเก่า ➡️ ลดต้นทุนการคำนวณและเพิ่มความเร็วในการ inference ✅ เปรียบเทียบกับ Qwen3 พบว่า gpt-oss เน้น “กว้าง” มากกว่า “ลึก” ➡️ มี embedding และ FFN ขนาดใหญ่ แต่ layer น้อยกว่า ✅ การเปิดโมเดลแบบ open-weight ช่วยให้นักพัฒนาสามารถปรับแต่งได้ตามต้องการ ➡️ เหมาะกับงานเฉพาะทาง เช่น การฝึกบนข้อมูลภายในองค์กร ✅ Apache 2.0 license ช่วยให้ startup และองค์กรขนาดเล็กเข้าถึง AI ขั้นสูง ➡️ โดยไม่ต้องเสียค่าใช้จ่ายหรือขออนุญาต ✅ โมเดลสามารถใช้ในระบบ agent เช่น การเรียกใช้เครื่องมือหรือ API ➡️ รองรับการใช้งานแบบ hybrid ระหว่าง local และ cloud ✅ OpenAI หวังใช้ gpt-oss เพื่อแข่งขันกับโมเดลจากจีน เช่น DeepSeek และ Qwen ➡️ และฟื้นความเชื่อมั่นจากชุมชน open-source ‼️ โมเดล gpt-oss มี hallucination rate สูง (49–53%) ⛔ อาจให้ข้อมูลผิดพลาดในงานที่ต้องการความแม่นยำสูง ‼️ OpenAI ไม่เปิดเผยชุดข้อมูลที่ใช้ฝึกโมเดล ⛔ เกิดข้อกังวลเรื่องลิขสิทธิ์และความโปร่งใส ‼️ แม้จะเปิดน้ำหนักโมเดล แต่ยังต้องใช้ hardware ขั้นสูงสำหรับรุ่นใหญ่ ⛔ อาจไม่เหมาะกับผู้ใช้ทั่วไปที่ไม่มี GPU ระดับ enterprise ‼️ การใช้ MoE ทำให้การฝึกและ deploy ซับซ้อนขึ้น ⛔ ต้องมีระบบ routing และการจัดการ expert ที่แม่นยำ https://magazine.sebastianraschka.com/p/from-gpt-2-to-gpt-oss-analyzing-the
0 Comments 0 Shares 53 Views 0 Reviews